Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 219: 114794, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279822

RESUMO

As an artificial biomimetic receptor, molecularly-imprinted polymer (MIP) has been widely used for the separation, enrichment and detection of various substances. However, due to the complexity of virus structure, huge volume and the existence of highly similar viruses, MIP shows unsatisfactory selectivity in virus detection. To overcome these issues, two kinds of virus nanoMIPs, just like a "cap", were synthesized by a solid-phase imprinting nanogel technique. The "cap" had no inner core and was much smaller than that of a conventional MIP, which was more favorable for mass transfer. Moreover, each "cap" could only combine with one target virus, which avoided the interference between large-volume virus molecules effectively. The two synthesized "caps" were mixed to construct a bifunctional MIP virus sensor for the simultaneous detection of Hepatitis A virus (HAV) and Hepatitis B virus (HBV). As expected, the selectivity factor (SF) for HBV detection reached 13.7, which was much higher than the reported virus MIP sensors (SF: 3-6), which was comparable to that of small molecular imprinting sensors. In addition, the high sensitivity toward HBV was 34.3 fM, and that of HAV was 27.1 pM. This method provides an idea for preparing high-selectivity biomacro-MIPs, as well as a method for the simultaneous detection of similar viruses with high sensitivity and selectivity. The recovery experiment of spiked serum showed that this method also has great practical application prospects.


Assuntos
Técnicas Biossensoriais , Vírus da Hepatite A , Impressão Molecular , Vírus da Hepatite B , Polímeros/química , Técnicas Biossensoriais/métodos , Polímeros Molecularmente Impressos , Impressão Molecular/métodos , Limite de Detecção
2.
ACS Appl Mater Interfaces ; 14(41): 46964-46971, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36198085

RESUMO

Fluorescence sensing is limited in practical applications owing to multiple autofluorescent substances in complex biological samples such as serum. In this paper, the luminescence decay effect of persistent luminescent nanoparticles (PLNPs) was used to avoid the interference of autofluorescence in complex biological samples, and a non-autofluorescence molecularly imprinted polymer aptamer sensor (MIP-aptasensor) was designed to detect H5N1 virus. The proposed MIP-aptasensor consists of a magnetic MIP and aptamer-functionalized persistent luminescent nanoparticle Zn2GeO4:Mn2+-H5N1 aptamer (ZGO-H5N1 Apt). Upon simultaneous recognition of H5N1 virus, strong persistent luminescent signal changes were produced. Using the unique luminescent characteristics of PLNPs and the high selectivity of imprinted polymers and aptamers, the designed MIP-aptasensor effectively eliminates the autofluorescence background interference of serum samples and realizes the non-autofluorescence detection of H5N1 virus with high sensitivity (a limit of detection of 0.0128 HAU mL-1, 1.16 fM) and selectivity (the imprinting factor for the target H5N1 virus was 6.72). This tool provides a strategy for the design of sensors and their application in complex biological samples.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Virus da Influenza A Subtipo H5N1 , Impressão Molecular , Nanopartículas , Luminescência , Polímeros Molecularmente Impressos , Nanopartículas/química , Aptâmeros de Nucleotídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...